Advances in Bayesian Network Learning using Integer Programming

نویسندگان

  • James Cussens
  • Mark Bartlett
چکیده

We consider the problem of learning Bayesian networks (BNs) from complete discrete data. This problem of discrete optimisation is formulated as an integer program (IP). We describe the various steps we have taken to allow efficient solving of this IP. These are (i) efficient search for cutting planes, (ii) a fast greedy algorithm to find high-scoring (perhaps not optimal) BNs and (iii) tightening the linear relaxation of the IP. After relating this BN learning problem to set covering and the multidimensional 0-1 knapsack problem, we present our empirical results. These show improvements, sometimes dramatic, over earlier results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integer Programming for Bayesian Network Structure Learning

Bayesian networks provide an attractive representation of structured probabilistic information. There is thus much interest in 'learning' BNs from data. In this paper the problem of learning a Bayesian network using integer programming is presented. The SCIP (Solving Constraint Integer Programming) framework is used to do this. Although cutting planes are a key ingredient in our approach, prima...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems

The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...

متن کامل

DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems

The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1309.6825  شماره 

صفحات  -

تاریخ انتشار 2013